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Part VI: Interaction between 
algorithms and data 
structures: case studies in 
geometric computation

Organizing and processing Euclidean space

In Part III we presented a varied sample of algorithms that use simple, mostly static, data structures. Part V was 

dedicated to dynamic data structures, and we presented the corresponding access and update algorithms. In this  

final part we illustrate the use of these dynamic data structures by presenting algorithms whose efficiency depends 

crucially  on  them,  in  particular  on  priority  queues  and  dictionaries.  We  choose  these  algorithms  from 

computational  geometry,  a  recently  developed  discipline  of  great  practical  importance  with  applications  in  

computer graphics, computer-aided design, and geographic databases.

If data structures are tools for organizing sets of data and their relationships, geometric data processing poses 

one of the most challenging tests. The ability to organize data embedded in the Euclidean space in such a way as to  

reflect the rich relationships due to location (e.g.  touching or intersecting,  contained in,  distance) is of  utmost 

importance for the efficiency of algorithms for processing spatial data. Data structures developed for traditional  

commercial data processing were often based on the concept of one primary key and several subordinate secondary 

keys. This asymmetry fails to support the equal role played by the Cartesian coordinate axes x, y, z, … of Euclidean  

space. If one spatial axis, say x, is identified as the primary key, there is a danger that queries involving the other 

axes, say y and z, become inordinately cumbersome to process, and therefore slow. For the sake of simplicity we  

concentrate on two-dimensional geometric problems, and in particular on the highly successful class of  plane-

sweep algorithms.  Sweep algorithms do a remarkably good job at processing two-dimensional  space efficiently 

using two distinct one-dimensional data structures, one for organizing the x-axis, the other for the y-axis.
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24. Sample problems and 
algorithms

Learning objectives:

• The nature of geometric computation: three problems and algorithms chosen to illustrate the variety of 

issues encountered:

• Convex hull yields to simple and efficient algorithms, straightforward to implement and analyze.

• Objects with special properties, such as convexity, are often much simpler to process than are general  

objects.

• Visibility problems are surprisingly complex; even if this complexity does not show in the design of an  

algorithm, it sneaks into its analysis.

Geometry and geometric computation

Classical geometry, shaped by the ancient Greeks, is more axiomatic than constructive: It emphasizes axioms, 

theorems, and proofs, rather than algorithms. The typical statement of Euclidean geometry is an assertion about all 

geometric configurations with certain properties (e.g. the theorem of Pythagoras: "In a right-angled triangle, the 

square on the hypotenuse c is equal to the sum of the squares on the two catheti a and b: c 2 = a2 + b2") or an 

assertion of existence (e.g. the parallel axiom: "Given a line L and a point P ∉ L, there is exactly one line parallel to 

L passing through P"). Constructive solutions to problems do occur, but the theorems about the impossibility of 

constructive solutions steal the glory: "You cannot trisect an arbitrary angle using ruler and compass only," and the 

proverbial "It is impossible to square the circle."

Computational geometry, on the other hand, starts out with problems of construction so simple that, until the 

1970s, they were dismissed as trivial: "Given n line segments in the plane, are they free of intersections? If not,  

compute (construct) all intersections." This problem is only trivial with respect to the existence of a constructive 

solution. As we will soon see, the question is far from trivial if interpreted as: How efficiently can we obtain the 

answer?

Computational geometry has some appealing features that make it ideal for learning about algorithms and data 

structures: (a) The problem statements are easily understood, intuitively meaningful, and mathematically rigorous; 

right away the student can try his own hand at solving them, without having to worry about hidden subtleties or a 

lot of required background knowledge. (b) Problem statement, solution, and every step of the construction have  

natural visual representations that support abstract thinking and help in detecting errors of reasoning. (c) These 

algorithms are practical; it is easy to come up with examples where they can be applied.

Appealing as geometric computation is, writing geometric programs is a demanding task. Two traps lie hiding  

behind the obvious combinatorial intricacies that must be mastered, and they are particularly dangerous when they  

occur together: (a) degenerate configurations, and (b) the pitfalls of numerical computation due to discretization 

and rounding errors.  Degenerate  configurations,  such as  those we discussed in  “Straight  lines  and circles”  on  
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intersecting line segments, are special cases that often require special code. It is not always easy to envision all the  

kinds  of  degeneracies  that  may  occur  in  a  given  problem.  A  configuration  may  be  degenerate  for  a  specific  

algorithm, whereas it may be nondegenerate for a different algorithm solving the same problem. Rounding errors 

tend to cause more obviously disastrous consequences in geometric computation than, say, in linear algebra or  

differential equations. Whereas the traditional analysis of rounding errors focuses on bounding their cumulative 

value,  geometry  is  concerned  primarily  with  a  stringent  all-or-nothing  question:  Have  errors  impaired  the  

topological consistency of the data? (Remember the pathology of the braided straight lines.)

In this Part VI we aim to introduce the reader to some of the central ideas and techniques of computational  

geometry. For simplicity's sake we limit coverage to two-dimensional Euclidean geometry - most problems become 

a lot more complicated when we go from two- to three-dimensional configurations. We focus on a type of algorithm 

that is remarkably well suited for solving two-dimensional problems efficiently: sweep algorithms. To illustrate 

their generality and effectiveness, we use plane-sweep to solve several rather distinct problems. We will see that 

sweep  algorithms  for  different  problems  can  be  assembled  from  the  same  building  blocks:  a  skeleton  sweep 

program that sweeps a line across the plane based on a queue of events to be processed, and transition procedures 

that update the data structures (a dictionary or table, and perhaps other structures) at each event and maintain a  

geometric invariant.  Sweeps show convincingly how the dynamic data structures of Part V are essential for the  

efficiency.

The problems and algorithms we discuss deal with very simple objects: points and line segments. Applications of  

geometric  computation such as CAD, on the other hand,  typically  deal  with very  complex objects made up of  

thousands of polygons. The simplicity of these algorithms does not deter from their utility. Complex objects get  

processed by being broken into their primitive parts, such as points, line segments, and triangles. The algorithms  

we present are some of the most basic subroutines of geometric computation, which play a role analogous to that of  

a square root routine for numerical computation: As they are called untold times, they must be correct and efficient.

Convex hull: a multitude of algorithms

The problem of computing the convex hull H(S) of a set S consisting of n points in the plane serves  as an 

example to demonstrate how the techniques of computational geometry yield the concise and elegant solution that 

we presented in “Algorithm animation”. The convex hull of a set S of points in the plane is the smallest convex  

polygon that contains the points of S in its interior or on its boundary. Imagine a nail sticking out above each point 

and a tight rubber band surrounding the set of nails.

Many different algorithms solve this simple problem. Before we present in detail the algorithm that forms the 

basis  of  the program 'ConvexHull'  of  chapter 3,  we briefly illustrate the main ideas behind three others.  Most 

convex hull algorithms have an initialization step that uses the fact that we can easily identify two points of S that  

lie  on the convex  hull  H(S):  for  example,  two  points  Pmin and Pmax with  minimal  and  maximal  x-coordinate, 

respectively.  Algorithms that grow convex hulls  over increasing subsets can use the segment as a (degenerate) 

convex hull to start with. Other algorithms use the segment to partition S into an upper and a lower subset, and  

compute the upper and the lower part of the hull H(S) separately.

1.  Jarvis's march [Jar 73] starts at a point on H(S), say Pmin, and 'walks around' by computing, at each point 

P, the next tangent to S, characterized by the property that all points of S lie on the same side of PQ
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Exhibit 24.1: The "gift-wrapping" approach to building the convex hull.

2.  Divide-and-conquer comes to mind: Sort the points of S according to their x-coordinate, use the median x-

coordinate to partition S into a left half SL and a right half SR, apply this convex hull algorithm recursively to 

each half, and merge the two solutions H(SL) and H(SR) by computing the two common exterior tangents to 

H(SL) and H(SR) (Exhibit 24.2). Terminate the recursion when a set has at most three points.

Exhibit 24.2: Divide-and-conquer applies to many problems on spatial data.

3.  Quickhull [Byk 78], [Edd 77], [GS 79] uses divide-and-conquer in a different way. We start with two points  

on the convex hull H(S), say Pmin and Pmax. In general, if we know ≥ 2 points on H(S), say P, Q, R in Exhibit

24.3, these define a convex polygon contained in H(S). (Draw the appropriate picture for just two points 

Pmin and Pmax on the convex hull.) There can be no points of S in the shaded sectors that extend outward 

from the vertices of the current polygon, PQR in the example. Any other points of S must lie either in the  

polygon PQR or in the regions extending outward from the sides.

Exhibit 24.3: Three points known to lie on the convex hull identify regions devoid of points.

For each side, such as PQ in Exhibit 24.4, let T be a point farthest from PQ among all those in the region 

extending outward from PQ, if there are any. T must lie on the convex hull, as is easily seen by considering 
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the parallel to PQ that passes through T. Having processed the side PQ, we extend the convex polygon to 

include T, and we now must process 2 additional sides,PT and TQ. The reader will observe a formal analogy 

between quicksort (“Sorting and its complexity”) and quickhull, which has given the latter its name.

Exhibit  24.4:  The  point  T  farthest  from   identifies  a  new  region  of  exclusion 

(shaded).

4.  In an  incremental scan or  sweep we sort the points of S according to their x-coordinates, and use the 

segment  PminPmax to partition S into an upper subset  and a lower subset,  as shown in  Exhibit  24.5. For 

simplicity of  presentation, we reduce the problem of computing H(S) to the two separate problems of  

computing the upper hull U(S) [i.e. the upper part of H(S)], shown in bold, and the lower hull L(S), drawn  

as a thin line. Our notation and pictures are chosen to describe U(S).

Exhibit 24.5: Separate computations for the upper hull and the lower hull.

Let P1, … , Pn be the points of S sorted by x-coordinate, and let U i = U(P1, … , Pi) be the upper hull of the first i 

points. U1 = P1 may serve as an initialization. For i = 2 to n we compute Ui from Ui–1, as Exhibit 24.6 shows. Starting 

with the tentative tangent PiPi–1 shown as a thin dashed line, we retrace the upper hull U i–1 until we reach the actual 

tangent: in our example, the bold dashed line PiP2. The tangent is characterized by the fact that for j = 1, … , i–1, it  

minimizes the angle Ai,j between PiPj and the vertical.
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Exhibit 24.6: Extending the partial upper hull U(P1, … , Pi–1) to the next point Pi

The program 'ConvexHull' presented in “Algorithm animation” as an example for algorithm animation is written 

as an on-line algorithm: Rather than reading all the data before starting the computation, it accepts one point at a  

time, which must lie to the right of all previous ones, and immediately extends the hull U i–1 to obtain Ui. Thanks to 

the input restriction that the points are entered in sorted order, 'ConvexHull' becomes simpler and runs in linear  

time. This explains the two-line main body:

PointZero;  { sets first point and initializes all necessary 

variables }

while NextRight do  ComputeTangent;

There remain a few programming details that are best explained by relating Fig. 24.6 to the declarations:

var x, y, dx, dy: array[0 .. nmax] of integer;

b: array[0 .. nmax] of integer;  { backpointer }

n: integer;  { number of points entered so far }

px, py: integer;  { new point }

The coordinates of the points Pi are stored in the arrays x and y. Rather than storing angles such as Ai,j, we store 

quantities proportional to cos(Ai,j) and sin(Ai,j) in the arrays dx and dy. The array b holds back pointers for retracing 

the upper hull back toward the left: b[i] = j implies that P j is the predecessor of Pi in Ui. This explains the key 

procedure of the program:

procedure ComputeTangent;  { from Pn = (px, py) to Un–1 }

var i: integer;

begin

i := b[n];

while  dy[n] · dx[i] > dy[i] · dx[n]  do  begin  { dy[n]/dx[n] > 

dy[i]/dx[i] }

i := b[i];
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dx[n] := x[n] – x[i];  dy[n] := y[n] – y[i];

MoveTo(px, py);  Line(–dx[n], –dy[n]);

b[n] := i

end;

MoveTo(px, py);  PenSize(2, 2);  Line(–dx[n], –dy[n]);  PenNormal

end;  { ComputeTangent }

The algorithm implemented by 'ConvexHull' is based on Graham's scan [Gra 72], where the points are ordered 

according to the angle as seen from a fixed internal point, and on [And 79].

The uses of convexity: basic operations on polygons

The convex hull of a set of points or objects (i.e. the smallest convex set that contains all objects) is a model  

problem in geometric computation, with many algorithms and applications. Why? As we stated in the introductory  

section, applications of geometric computation tend to deal with complex objects that often consist of thousands of  

primitive  parts,  such  as  points,  line  segments,  and  triangles.  It  is  often  effective  to  approximate  a  complex  

configuration by a simpler one, in particular, to package it in a container of simple shape. Many proximity queries 

can be answered by processing the container only. One of the most frequent queries in computer graphics, for 

example, asks what object, if any, is first struck by a given ray. If we find that the ray misses a container, we infer  

that it misses all objects in it without looking at them; only if the ray hits the container do we start the costly 

analysis of all the objects in it.

The convex hull is often a very effective container. Although not as simple as a rectangular box, say, convexity is  

such a strong geometric property that many algorithms that take time O(n) on an arbitrary polygon of n vertices 

require only time O(log n) on convex polygons. Let us list several such examples. We assume that a polygon G is  

given as a (cyclic) sequence of n vertices and/or n edges that trace a closed path in the plane. Polygons may be self-

intersecting, whereas simple polygons may not. A simple polygon partitions the plane into two regions: the interior,  

which is simply connected, and the exterior, which has a hole.

Point-in-polygon test

Given a simple polygon G and a query point  P (not  on G), determine whether P lies  inside or outside the  

polygon.

Two closely related algorithms that walk around the polygon solve this problem in time O(n). The first one 

computes the winding number of G around P. Imagine an observer at P looking at a vertex, say V, where the walk  

starts, and turning on her heels to keep watching the walker (Exhibit 24.7). The observer will make a first (positive) 

turn α, followed by a (negative) turn β, followed by … , until the walker returns to the starting vertex V. The sum α + 

β + … of all turning angles during one complete tour of G is: 2·π if P is inside G, and 0 if P is outside G.
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Exhibit 24.7: Point-in polygon test by adding up all turning angles.

The second algorithm computes the crossing number of G with respect to P. Draw a semi-infinite ray R from P 

in any direction (Exhibit 24.8). During the walk around the polygon G from an arbitrary starting vertex V back to V,  

keep track of whether the current oriented edge intersects R, and if so, whether the edge crosses R from below (+1)  

or from above (–1). The sum of all these numbers is +1 if P is inside G, and 0 if P is outside G.

Exhibit 24.8: Point-in polygon test by adding up crossing numbers.

Point-in-convex-polygon test

For a convex polygon Q we use binary search to perform a point-in-polygon test in time O(log n). Consider the 

hierarchical  decomposition  of  Q  illustrated  by  the  convex  12-gon  shown  in  Exhibit  24.9.  We  choose  three 

(approximately) equidistant vertices as the vertices of an innermost core triangle, painted black. "Equidistant" here 

refers not to any Euclidean distance, but rather to the number of vertices to be traversed by traveling along the  

perimeter of Q. For a query point P we first ask, in time O(1), which of the seven regions defined by the extended  

edges of this triangular core contains P. These seven regions shown in Exhibit 24.10 are all "triangles" (albeit six of 

them extend to infinity), in the sense that each one is defined as the intersection of three half-spaces. Four of these 

regions provide a definite answer to the query "Is P inside Q, or outside Q?" One region (shown hatched in Exhibit

24.10) provides the answer 'In',  three the answer  'Out'.  The remaining three regions,  labeled 'Uncertain',  lead 

recursively to a new point-in-convex-polygon test, for the same query point P, but a new convex polygon Q' which is  
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the intersection of Q with one of the uncertain regions. As Q' has only about n  / 3 vertices, the depth of recursion is 

O(log n). Actually, after the first comparison against the innermost triangular core of Q, we have no longer a general  

point-in-convex-polygon problem, but one with additional information that makes all but the first test steps of a  

binary search.

Exhibit 24.9: Hierarchical approximation of a convex 12-gon as a 3-level tree of triangles. The root is in  

black, its children are in dark grey, grandchildren in light grey.

Exhibit 24.10: The plane partitioned into four regions of certainty and three of uncertainty. 

The latter are processed recursively.

Visibility in the plane: a simple algorithm whose analysis is not

Many computer graphics programs are dominated by visibility problems: Given a configuration of objects in 

three-dimensional space, and given a point of view, what is visible? Dozens of algorithms for hidden-line or hidden-

surface elimination have been developed to solve this  everyday problem that our visual system performs "at  a  

glance".  In contrast  to the problems discussed above,  visibility  is  surprisingly  complex.  We give a  hint of  this 

complexity by describing some of the details buried below the smooth surface of a "simple" version: computing the 

visibility of line segments in the plane.

Problem: Given n line segments in the plane, compute the sequence of (sub)segments seen by an observer at 

infinity (say, at y = –∞).
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The complexity of this problem was unexpected until discovered in 1986 [WS 88]. Fortunately, this complexity 

is revealed not by requiring complicated algorithms, but in the analysis of the inherent complexity of the geometric 

problem. The example shown in Exhibit 24.11 illustrates the input data. The endpoints (P1, P10), (P2, P8), (P5, P12) of 

the three line segments labeled 1, 2, 3 are given; other points are computed by the algorithm. The required result is  

a list of visible segments, each segment described by its endpoints and by the identifier of the line of which it is a  

part:

(P1, P3, 1), (P3, P4, 2), (P5, P6, 3), (P6, P8, 2), (P7, P9, 3), (P9, P10, 1), (P11, P12, 3)

Exhibit 24.11: Example: Three line segments seen from below generate seven visible subsegments.

In search of algorithms, the reader is encouraged to work out the details of the first idea that might come to  

mind: For each of the n2 ordered pairs (Li, Lj) of line segments, remove from Li the subsegment occluded by Lj. 

Because Li can get cut into as many as n pieces, it must be managed as a sequence of subsegments. Finding the  

endpoints of Lj in this sequence will take time O(log n), leading to an overall algorithm of time complexity O(n2 · log 

n).

After the reader has mastered the sweep algorithm for line intersection presented in “Plane-sweep: a general-

purpose algorithm for two-dimensional problems illustrated using line segment intersection”, he will see that its  

straightforward application to the line visibility problem requires time O((n + k) · log n), where k ∈ O(n2) is the 

number  of  intersections.  Thus  plane-sweep appears  to  do  all  the  work the  brute-force  algorithm above  does,  

organized in a systematic left-to-right fashion. It keeps track of all intersections, most of which may be invisible. It  

has the potential to work in time O(n · log n) for many realistic data configurations characterized by k ∈ O(n), but 

not in the worst case.

Divide-and-conquer yields a simple two-dimensional visibility algorithm with a better worst-case performance. 

If n = 0 or 1, the problem is trivial. If n > 1, partition the set of n line segments into two (approximate) halves, solve  

both subproblems, and merge the results. There is no constraint on how the set is halved, so the divide step is easy.  

The conquer step is taken care of by recursion. Merging amounts to computing the minimum of two piecewise (not 

necessarily continuous) linear functions, in time linear in the number of pieces. The example with n = 4 shown in  

Exhibit 24.12 illustrates the algorithm. f12 is the visible front of segments 1 and 2, f34 of segments 3 and 4, min(f12, 

f34) of all four segments (Exhibit 24.13).
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Exhibit 24.12: The four line segments will be partitioned into subsets {1, 2} and {3, 

4}.

Exhibit 24.13: The min operation merges the solutions of this divide-and-conquer 

algorithm.

The time complexity of this divide-and-conquer algorithm is obtained as follows. Given that at each level of 

recursion the relevant sets of line segments can be partitioned into (approximate) halves, the depth of recursion is  

O(log n). A merge step that processes v visible subsegments takes linear time O(v). Together, all the merge steps at 
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a given depth process at most V subsegments, where V is the total number of visible subsegments. Thus the total 

time is bounded by O(V · log n). How large can V be?

Surprising theoretical results

Let V(n) be the number of visible subsegments in a given configuration of n lines, i.e. the size of the output of the  

visibility computation. For tiny n, the worst cases [V(2) = 4, V(3) = 8] are shown in Exhibit 24.14. An attempt to 

find worst-case configurations for general n leads to examples such as that shown in Figure 24.15, with V(n) = 5·n – 

8.

Exhibit 24.14: Configurations with the largest number of visible subsegments.

Figure 24.15: A family of configurations with 5·n – 8 visible subsegments.

You will find it difficult to come up with a class of configurations for which V(n) grows faster. It is tempting to  

conjecture that V(n) ∈ O(n), but this conjecture is very hard to prove - for the good reason that it is false, as was  

discovered in [WS 88]. It turns out that V(n) ∈ Θ (n · α(n)), where α(n), the inverse of Ackermann's function (see 

“Computability and complexity”, Exercise 2), is a monotonically increasing function that grows so slowly that for 

practical purposes it can be treated as a constant, call it α.

Let us present some of the steps of how this surprising result was arrived at. Occasionally, simple geometric 

problems can be tied to deep results in other branches of mathematics. We transform the two-dimensional visibility 

problem into a combinatorial string problem. By numbering the given line segments, walking along the x-axis from 

Algorithms and Data Structures 282  A Global Text

http://creativecommons.org/licenses/by/3.0/


24. Sample problems and algorithms

left to right, and writing down the number of the line segment that is currently visible, we obtain a sequence of  

numbers (Exhibit 24.16).

Exhibit 24.16: The Davenport-Schinzel sequence associated with a configuration of 

segments.

A geometric configuration gives rise to a sequence u1, u2, … , um with the following properties:

1. 1  ≤ ui  ≤ n for 1 ≤ i ≤ m (numbers identify line segments).

2. ui ≠ ui+1 for 1 ≤ i ≤ m – 1 (no two consecutive numbers are equal).

3. There are no five indices 1 ≤ a < b < c < d < e ≤ m such that ua = uc = ue = r and ub = ud = s, r ≠ s. This 

condition captures  the geometric  properties  of  two intersecting  straight  lines:  If  we ever  see  r,  s,  r,  s 

(possibly separated), we will never see r again, as this would imply that r and s intersect more than once 

(Exhibit 24.17).

Exhibit 24.17: The subsequence r, s, r, s excludes further occurrences of r.

Example

The sequence for the example above that shows m ≥ 5 n – 8 is

1, 2, 1, 3, 1, … , 1, n–1, 1, n–1, n–2, n–3, … , 3, 2, n, 2, n, 3, n, … , n, n–2, n, n–1, n.
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Sequences with the properties 1 to 3, called Davenport-Schinzel sequences, have been studied in the context of 

linear differential equations. The maximal length of a Davenport-Schinzel sequence is k · n ·  α(n), where k is a 

constant and α(n) is the inverse of Ackermann's function (see “Computability and complexity”, Exercise 2) [HS 86].  

With increasing n, α(n) approaches infinity, albeit very slowly. This dampens the hope for a linear upper bound for 

the visibility problem, but does not yet disprove the conjecture. For the latter, we need an inverse: For any given  

Davenport-Schinzel sequence there exists a corresponding geometric configuration which yields this sequence. An 

explicit construction is given in [WS 88]. This establishes an isomorphism between the two-dimensional visibility 

problem and the Davenport-Schinzel  sequences, and shows that  the size of  the output of  the two-dimensional 

visibility problem can be superlinear - a result that challenges our geometric intuition.

Exercises

1. Given a set of points S, prove that the pair of points farthest from each other must be vertices of the convex  

hull H(S).

2. Assume a model  of  computation in  which the operations addition,  multiplication,  and comparison are 

available at unit cost. Prove that in such a model Ω(n · log n) is a lower bound for computing, in order, the 

vertices of the convex hull H(S) of a set S of n points. Hint: Show that every algorithm which computes the 

convex hull of n given points can be used to sort n numbers.

3. Complete the second algorithm for the point-in-polygon test in chapter 24 in the section “The uses of 

convexity: basic operations on polygons” which computes the crossing number of the polygon G around 

point P by addressing the special cases that arise when the semi-infinite ray R emanating from P intersects  

a vertex of G or overlaps an edge of G.

4. Consider an arbitrary (not necessarily simple) polygon G (Exhibit 24.18). Provide an interpretation for the 

winding number w(G, P) of G around an arbitrary point P not on G, and prove that w(G, P)  / 2·π of P is 

always equal to the crossing number of P with respect to any ray R emanating from P.

Exhibit 24.18: Winding number and crossing number of a polygon G with respect to P.

5. Design an algorithm that computes the area of an n-vertex simple, but not necessarily convex polygon in 

Θ(n) time.

6. We consider the problem of computing the intersection of two convex polygons which are given by their  

lists of vertices in cyclic order.

(a) Show that the intersection is again a convex polygon.

(b) Design an algorithm that computes the intersection. What is the time complexity of your algorithm?
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7. Intersection test for line L and [convex] polygon Q  If an (infinitely extended) line L intersects a polygon Q, 

it  must intersect one of Q's edges. Thus a test  for intersection of a given line L with a polygon can be 

reduced to repeated test of L for intersection with [some of] Q's edges.

(a) Prove that, in general, a test for line-polygon intersection must check at least n – 2 of Q's edges. Hint: 

Use an adversary argument. If two edges remain unchecked, they could be moved so as to invalidate 

the answer.

(b) Design a test that works in time O(log n) for decoding whether a line L intersects a convex polygon Q.

8. Divide-and-conquer algorithms may divide the space in which the data is embedded, rather than the set of 

data (the set of lines). Describe an algorithm for computing the sequence of visible segments that partitions  

the space recursively into vertical stripes, until each stripe is "simple enough"; describe how you choose the  

boundaries of the stripes; state advantages and disadvantages of this algorithm as compared to the one 

described in chapter 24 in the section “Visibility in the plane: a simple algorithm whose analysis is not”. 

Analyze the asymptotic time complexity of this algorithm.
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